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A Valuation Model of Mortgage Insurance Premiums Considering 
the Target Prescribed Capital Requirement for Systematic Risk 

Abstract 

This study derives a closed-form formula for mortgage insurance (MI) premium that 

includes the systematic and idiosyncratic risks based on option-pricing theory. This 

formula can be used to calculate the MI premium considering the target prescribed 

capital requirement, which aims to manage the systematic risk at a given confidence 

level. Thus, using it can help insurers against huge changes in the economic 

environment. We use U.S. market data to illustrate the application of our model. Our 

results show that the idiosyncratic risk is a larger proportion of the total housing risk 

than is the systematic risk; and MI premiums based on considering both systematic 

and idiosyncratic risks are higher than without considering these two risks. Moreover, 

the sensitivity analyses reveal that the MI premium is positively related to the 

parameters of both the systematic and unsystematic risks. Our pricing formula for an 

MI premium and the results of numerical analyses should make it easier for MI 

insurers to account for the economic environment in determining fair MI premiums 

and to effectively undertake sophisticated risk management.  

Keywords: Systematic Risk, Idiosyncratic Risk, Mortgage Insurance, Default, 

Valuation  

JEL: G1, G21, G22 
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1. Introduction 

In 2007, a sub-prime mortgage crisis caused worldwide financial market turbulence. 

This crisis produced large losses given default for mortgage insurance institutions. 

Since 2007, the mortgage insurance industry has paid more than $50 billion in claims 

to lenders and investors. The members of the MICA (Mortgage Insurance Companies 

of America) collectively had a sharp increase in their average loss ratio from 36.23% 

in 2005 to 218.41% in 2008. Moreover, the combined ratio also increased from 

60.44% in 2005 to 237.84% in 2008.1 As is well known, mortgage insurance (MI) 

system plays an important role in the housing finance market because it provides 

protection to lenders against losses associated with mortgage defaults and facilitates 

the creation of secondary mortgage markets. The MI premium is the main revenue for 

MI institutions. For maintaining a good MI system, MI institutions need an 

appropriate valuation model for accurately estimating the MI premium. The 2007 

financial crisis is usually treated as a kind of systematic risk in valuation theory. Thus, 

considering systematic risk poses new challenges to the pricing of MI premiums. For 

the purpose of accurately pricing MI premiums, the main purpose of this study was to 

support an MI valuation model including the systematic risks of the housing market. 

Recent trends indicate that setting the target PCR (prescribed capital requirement) 

at 99.5% as a value at risk (VaR) measure over a 1-year time frame is emerging as the 

international standard.2 To meet the target PCR of the solvency rules, insurers must 

 
1 For more detailed information, please see the website: 
https://fcic-static.law.stanford.edu/cdn_media/fcic-docs/0000-00-00%20Mortgage%20Insurance%20
Companies%20of%20America,%202009-2010%20Fact%20Book%20and%20Member%20Directory.
pdf. 

2 For example, according to Solvency II, the SCR (solvency capital requirement) is based on a VaR 
measure calibrated to the 99.5% confidence level over a 1-year time horizon. Furthermore, the 
solvency requirements of Solvency II are economy risk-based. They are more risk-sensitive and 
more sophisticated than in the past, thus enabling better coverage of the real risks run by any 
particular insurer. 
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obey the solvency capital requirement. Mortgage insurers must operate within a 

25-to-1 ratio of risk to capital, which means they must set aside $1 of capital for every 

$25 of risk they incur.  

This study provides another method for MI insurers to meet the target PCR of the 

solvency rules. In general, the mortgagors pay the MI premium to MI companies 

(insurers). If measuring the MI premiums does not consider the target PCR of 

systematic risk, MI insurers may bear extra costs caused from the worst situation of 

systematic risk for obeying the solvency capital requirement, as justly mentioned. 

However, if mortgage insurers valuate the MI premium has considered the target PCR 

of the systematic risk, they can receive the premium including the potential losses 

caused from the worst situation of systematic risk. Then they can reduce prepayment 

of the solvency capital requirement and effectively allocate their capital. Accordingly, 

it is important for MI companies to adopt an MI valuation model which considers the 

target PCR for the systematic risk. The current MI valuation model does not consider 

the target PCR of the systematic risk. Thus, this study tries to look at it from another 

angle and supports a suitable MI valuation model that considers such situation.  

Options-based pricing models have usually been the choice for pricing and 

analyzing MI contracts (Schwartz and Torous, 1992; Kau, Keenan and Muller, 1993; 

Lai and Gendron, 1994; Kau and Keenan, 1996, 1999; Azevedo-Pereira, Newton and 

Paxson, 2002, 2003; Bardhan, Karapandza and Urosevic, 2006). Nowadays, a famous 

options pricing theory, the martingale pricing method, is commonly used to evaluate 

the contracts with the options-style payoffs. This study also uses the martingale 

pricing method to value the MI contract. Using this method, accurate pricing of MI 

premiums depends mainly on a reasonable specification of the probability of default 
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(PD) and of the loss given default (LGD) of a mortgage. Much research has shown 

that changes in the housing price significantly influence the PD and LGD of a 

mortgage. (e.g., Schwartz and Torous, 1989, 1993; Quigley and Van Order, 1990, 

1995; Smith et al., 1996; Hurt and Felsovalyi, 1998; Frye, 2000a, b; 2003; Jokivuolle 

and Peura, 2003; Lambrecht, et al., 2003; Archarya et al., 2004; Dermine and 

Carvalho, 2006).  

Hendershott and Van Order (1987) find evidence that MI premiums are not very 

sensitive to interest rate volatility. Thus, a number of authors assume that the interest 

rate is a deterministic variable and let the housing risk (i.e., the house price volatility) 

become the most important factor for obtaining a closed-form formula for MI 

premiums when using options-based pricing models (Bardhan et al., 2006; Chen et al., 

2010; Chang et al., 2012; Pu et al., 2016). To derive a closed-form formula for an MI 

premium based on an options-based pricing model, we also follow their specifications 

and assume that the housing risk is the most important factor.3  

The housing risk can be divided into two parts: the housing systematic risk and 

the housing idiosyncratic risk (or non-systematic risk). As for the systematic risk in 

the housing market, a large number of studies have investigated the significant effects 

of macroeconomic factors on house prices or returns (Case and Shiller, 1990; Leung, 

 
3 A closed-form solution of MI premium provides several advantages. First, one can better understand 
how sensitive MI premium is to the changes in relevant variables by conducting numerical analyses. 
Second, a closed-form solution can significantly increase the speed of calculation when the valuation of 
the MI premium is involved in more complicated analyses. Third, a closed-form solution of the MI 
premium provides a basic building block for MI insurers to design more complicated MI contracts. 
Because of previous reasons, we intend to support a closed-form pricing model for MI contract. The 
closed-form formula is important for MI insurers not only because it can be readily implemented in 
various market settings, but also because comparative statistics can be obtained analytically instead of 
by complicated numerical procedures. However, it is exceedingly difficult to derive a closed-form 
solution for MI valuation using an option-based model that includes more than two stochastic state 
variables (Kau et al., 1992, 1995; Kau, Keenan, and Muller, 1993; Kau and Keenan, 1995, 1999) 
because calculating the price requires solving a second-order partial differential equation that is subject 
to boundary and termination conditions. Thus, in general, only one stochastic state variable is used in 
option-based models. 
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2004; Girouard et al., 2006; Goodhart and Hofmann, 2008; Chang et al., 2012). These 

studies provide empirical evidence about the importance of macroeconomic factors in 

explaining the variations in housing prices. It implies that systematic risk driven by 

macroeconomic factors matters in interpreting the evolution of housing prices.  

Idiosyncratic risk also plays an important role in housing returns, because the 

housing assets have restrictions on diversification due to high transaction costs and 

liquidity risk. Many studies find a significantly positive relation between the 

estimated conditional idiosyncratic volatilities and expected returns (Eiling, 2006, 

Spiegel and Wang, 2006, Brockman and Schutte, 2007, and Fu, 2009). Capozza and 

Schwann (1990) find that nonsystematic risk can be a very important determinant of 

housing prices. Sanders (2008) emphasizes that the effects of regional economic 

factors are even more important than systematic risk effects in explaining U.S. 

mortgage defaults before 2005, although the systematic risk effect became more 

important from 2005 to 2008 Q2.  

Moreover, several studies indicate that systematic risk (idiosyncratic risk) has a 

negative (positive) effect on housing returns (Capozza and Schwann, 1990; Miller and 

Pandher, 2008; Fei, 2009; Lee et al., 2014; Pu et al., 2016). According to the findings 

in the previous literature, one can infer that the systematic risk is indeed a crucial 

factor in determining mortgage insurance premiums. Furthermore, because MI 

insurers do not fully diversify in the reinsurance market, idiosyncratic risk should also 

be considered in MI valuation models.  

In many MI models, the housing price change is assumed to follow a geometric 

Brownian motion without separate consideration of the systematic risk and the 

idiosyncratic risk (Kau et al., 1992, 1995; Kau, Keenan, and Muller, 1993; Kau and 
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Keenan, 1995, 1999; Bardhan et al., 2006). Pu et al. (2016) considered systematic and 

idiosyncratic shocks to price MI premiums. They use the correlation coefficient to 

decompose the volatility of the underlying housing prices into systemic volatility and 

idiosyncratic volatility. Such a decomposition method is usually used to address the 

problem of default correlation or default clustering in the pricing of financial products 

(Miao and Wang, 2007; Fan et al., 2012; Lee et al., 2015).  

The important goal of this study was to model the housing price process including 

the systematic and idiosyncratic risk, thus can separate consider these two risks for 

pricing MI premiums. Such specification can work well for changes in housing prices 

caused by systematic risk or idiosyncratic risk. Several studies have demonstrated that 

the capital asset pricing model (CAPM) can effectively decompose the systematic risk 

and idiosyncratic risk on the housing return (Miller and Pandher, 2008; Sarama, 2010; 

Imreorow and Schagerstrom, 2011; Sarama, 2011; Voicu and Seiler, 2013). Thus, we 

adopt CAPM to model the housing price process including the systematic and 

idiosyncratic risk. Since our model focuses on investigating the influence of the 

systematic risk, driven by the entire financial market or the macroeconomic situation, 

on MI premiums,4 our closed-form valuation formula can be readily implemented in 

various market settings. 

For addressing the management of target PCR, we use the theory of VaR (value 

at risk) to derive a closed-form formula for an MI premium if the MI insurer seeks to 

restrain the systematic risk at a given confidence level. Using our pricing formula, MI 

 
4The terms “systematic” and “systemic” risk have different definitions. According to the CAPM, 
systematic risks represent macroeconomic or aggregate risks that cannot be avoided through 
diversification. Systemic risk can be defined as the cascading or contagion effect of an idiosyncratic 
shock on the entire market due to the extensive interdependencies among firms in the market. Thus, 
this risk is sometimes considered to be different than systematic risk (Harrington, 2009). In addition, 
the clustering of mortgage defaults can be identified from the relevant literature to include systemic 
risk impacts (e.g., Harrington, 2009; Baluch et al., 2011). With regard to the insurance sector, 
systematic risk exposure can also be treated as a proxy for systemic risk (Allen and Jagtiani, 2000). 
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insurers can determine fair MI premiums according to changes in the economic 

environment. Thus, they can obtain MI premiums that adequately guard against losses 

caused by the systematic risk. Based on our model, it may also lower their extra 

reserve fund for satisfying the solvency capital requirements. That can help them 

achieve greater flexibility in the management of their liquidity. 

A numerical example is provided to show how the model can be used in 

applications. We adopt the 51 U.S. state HPIs (housing price indexes), obtained from 

the Federal Housing Finance Agency (FHFA), as our source for the area-specific 

housing returns, and we use the S&P 500 Index and the U.S. HPI as the proxies of 

market portfolio. Then, we calculate the MI premium for each state. Through 

empirical analyses, we can understand which market portfolio proxy is better able to 

explain variation in the area-specific housing returns and thus is suitable for pricing 

MI. 

This article contributes to the literature on MI contract pricing in the following 

ways. First, to the best of our knowledge, our pricing model is the first to provide a 

closed-form formula for MI valuation that considers both the systematic and 

idiosyncratic risks of the housing market. Such specification can fully depict the risks 

inherent in housing markets driven by common aggregate factors and idiosyncratic 

fluctuations arising from local shocks. Second, our model can be used to calculate MI 

premiums considering the systematic risk at different confidence levels. The model 

should help insurers determine reasonable MI premiums given their worst losses in a 

changing economic environment. Finally, we use U.S. housing market data to 

illustrate the application of our model and compare results from our model and those 

from a traditional model. Also, our numerical analyses demonstrate the sensitivity of 

MI premiums to changes in the model’s parameters related to the systematic and 
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idiosyncratic risks. This discussion should help insurers better understand how the 

different risks influence MI premiums. 

The remainder of this paper is organized as follows. Section 2 provides the 

framework used for pricing MI premiums. It describes the components of the MI 

contract and defines the MI payouts that are made by the loss-given-default of the 

insurer. We first present the MI valuation model calculated by the traditional method, 

which does not consider the systematic and idiosyncratic risks. Then, we provide our 

MI valuation model, which includes these two risks, and derive the closed-form 

formula for MI considering the systematic risk at a given confidence level. In Section 

3, we provide a numerical example to demonstrate the application of our model. This 

section also includes a discussion of the sensitivity of MI premiums to changes in the 

model’s parameters and compares results from our model and the traditional model. In 

the final section we summarize our findings. 

2. The models 

This section presents the valuation framework for an MI premium. In Subsection 2.1, 

we describe the components of MI and introduce the traditional MI pricing model 

provided by Bardhan et al. (2006). Subsection 2.2 explains how to derive the 

closed-form formula for the MI premium when the valuation model considers the 

systematic and idiosyncratic risks.  

2.1 The traditional MI valuation model 

Numerous studies have used options-based pricing models for pricing and analyzing 

MI contracts. However, it is exceedingly difficult to derive a closed-form formula for 

MI valuation using an option-based model that includes more than two stochastic state 

variables. Bardhan et al. (2006) is the first paper to present an option-pricing 
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framework for pricing MI contracts in a closed-form. In this literature, it includes only 

one stochastic state variable (i.e., housing prices) and assume the default probability 

to be an exogenous variable.5  

Our study uses the fixed-rate mortgage (FRM), which is the basic building 

block of the mortgage market. Let the FRM be a fully amortized mortgage with a 

fixed coupon rate  and time to maturity of  years. At origination, the initial 

mortgage principal is obtained as follows: 

,                                                 (1) 

where  is the LTV and  is the initial house price. This implies a paymant  

equal to:  

.                                        (2) 

The principal outstanding at time , , is obtained by 

.                                      (3) 

Generally, there are two basic kinds of MI available in the U.S. financial market: 

private mortgage (PM) insurance and government mortgage insurance, offered mainly 

by the Federal Housing Administration (FHA). MI guarantees that if a borrower 

defaults on a loan, a mortgage insurer will pay the mortgage lender for any loss 

resulting from a property foreclosure, up to a certain percentage of the claim amount. 

They differ along such dimensions as the depth of coverage offered. The FHA is 

obligated to pay all the losses, whereas PM insurers are obligated to cover the 

 
5 Bardhan et al. (2006) mention that one way of estimating these probabilities is by using actuarial 
mortgage default and prepayment experience, or their proxies if the appropriate data are unavailable. 
Moreover, as long as past prepayment and default experience are decent predictors of future 
prepayment and default experience (a reasonable assumption in stable economies), such an approach is 
guaranteed to work; i.e., on average, the modeled unconditional probabilities of default coincide with 
the observed ones. 
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maximum loss, which usually ranges between 20% and 30% of the exposure.6 This 

means that in the event of default, the insurer pays the difference between the house’s 

value and the mortgage payment, up to some given fraction of the unpaid balance. In 

this study, we support the valuation model for the MI of FHA.  

According to the typical model of an MI contract (Kau et al., 1995, Bardhan, et 

al., 2006; Chen et al., 2009), the realized loss for the insurer in case the borrower 

defaults can be represented as a portfolio of put options on the borrower’s collateral. 

Following their model, if a default occurs at time , the insurer has to pay the lender 

the amount described as follows:  

,                    (4) 

where  is the payoff of the MI insurer at time  and  is the loss ratio. This 

equation implies that if the collateral value is greater than the outstanding loan, the 

lender can fully recover the outstanding loan from the foreclosure or short sale 

proceeds, and thus the loss to the insurer is zero. On the other hand, if the housing 

price is not sufficient for a full repayment of the loan balance, the maximum loss the 

insurer is obligated to pay is equal to . 

Equation (4) can be rewritten as follows: 

.    (5) 

The present value of the severity of loss, , is given by the following 

expression: 

   

,           (6) 

where  is an expected operator under the risk-neutral measure, , 

and . Equation (6) shows that the expected present value of 

 
6 For more detailed information, please see the website http://www.alliemae.org/pmi.html. 
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 equals the difference between two European put options with the same 

underlying asset  and the time to maturity equaling the time to default . 

Thus, the expected present value of  can be duplicated by a long position in a 

European put option with a strike price  and a short position in a European put 

option with a strike price ; that is, its payoff is the same as the payoff from a bear 

spread created by the two put options. For simplicity, we represent Equation (6) as the 

option style that includes two European put options with different strike prices as 

follows: 

,                                (7) 

where  is a European put option with underlying asset , strike price 

,  and maturity date . 

To solve the closed-form formula for these two European put options in 

Equation (6), the evolution of the house return needs to be specified. In the previous 

relevant studies on MI pricing, the housing price change is assumed to follow a 

traditional geometric Brownian motion (Kau et al., 1992, 1995; Kau, Keenan, and 

Muller, 1993; Kau and Keenan, 1995, 1999; Bardhan et al., 2006). It can be expressed 

as follows: 

,                                (8) 

where  is the housing price,  is the risk-free interest rate,  is the 

depreciated yield,  is the instantaneous standard deviation of the housing return 

and  is a standard Brownian motion of the housing return under the 

risk-neutral measure. 
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Using the standard pricing results for European put options with constant 

dividend yields (Hull, 1999), the two European put options in Equation (7) can be 

solved. Their closed-form formulas can be expressed as 

,                (9) 

where  is the cumulative density of a standard random variable;  

; and 

.  

The actuarially fair price has an expected net payoff of zero; that is, the 

premiums paid are equal to the expected value of the compensation received. Such an 

insurance policy makes no economic profit. Thus, the actuarially fair price of the MI 

premium is determined as the sum of the expected loss for each time point of the life 

of the mortgage. Since, by assumption, the housing price is independent of the 

unconditional probability of the borrower’s default , the fair price of the MI 

premium can be expressed as follows: 

,                                       (10) 

where  is the MI premium calculated by the Bardhan et al. (2006) model, and 

 is the unconditional default probability at time . The next subsection 

illustrates how the systematic and idiosyncratic risks are incorporated in the valuation 

model for the MI premium. 

2.2 The MI valuation model considering systematic and idiosyncratic risks 

This study refers to the model shown in Bardhan et al. (2006) as the basic model for 

valuing an MI premium. Unlike Bardhan et al. (2006), our model emphasizes the 

importance of both systematic and idiosyncratic risks in driving the evolution of 
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housing returns, and thus the MI premiums should be more accurately measured by 

our model than theirs.  

A number of studies have demonstrated that the CAPM, which uses the return of 

the aggregate U.S. housing market as the market portfolio proxy, can effectively 

decompose the systematic risk and idiosyncratic risk on the housing return (Capozza 

and Schwann, 1990; Miller and Pandher, 2008; Sarama, 2010; Imreorow and 

Schagerstrom, 2011; Case et al., 2011; Sarama, 2011; Voicu and Seiler, 2013). Some 

studies also computed the average idiosyncratic volatility based on the variance 

decomposition or used the residuals from the CAPM (Capozza and Schwann, 1990; 

Miller and Pandher, 2008). We therefore use the CAPM to decompose the risk of 

underlying housing prices into the systematic risk and the idiosyncratic risk. 

Using the CAPM in the investigation related to the housing market, we have 

,                                     (11) 

where  is the housing return in a regional housing market;  is the intercept 

term;  is the coefficient, which is a measure of the systematic risk of a regional 

housing market in comparison to the whole market;  is the return of the market 

portfolio; and  is the error term for regression. According to Equation (11), the 

relationship between housing market volatility and whole market volatility can be 

expressed as follows: 

.                                     (12) 

In this equation,  denotes the systematic risk, where  is the variance of 

the return of the market portfolio. Since we assume that the market portfolio proxy 
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can capture all the systematic risk, by definition only the idiosyncratic risk is left in 

the residuals. Thus, we denote  as the idiosyncratic risk. 

In order to properly model the housing price process including these two risks, 

we decompose the volatility of the underlying housing prices into systematic volatility 

and idiosyncratic volatility. Thus,  in Equation (8) becomes as follows:  

,            (13) 

where  and  are the standard Brownian motion. Here we assume 

 and  are independent. Then, according to Equation (12), we have 

.                                       (14) 

Next, we derive the closed-form formula for evaluating the actuarially fair price 

of an MI premium based on the probability of a loss rate caused by the systematic risk 

that is not exceeded by 1-  confidence level in VaR theory. According to Equation 

(6), the value of a European put option based on the systematic risk at the 

1- confidence level (denoted as ) can be represented as follows:7 

,       (15) 

where  is a set of  with the systematic risk at the 1-  confidence 

level, and  is an indicator operator equal to 1 if  occurs and 0 

otherwise.  

On the right-hand side of Equation (15), = . 

When deriving the closed-form formula for MI premiums, we need to solve  

 
7 For simplicity, the interest rate in our model is not assumed to be a random variable because previous 
research does not identify any effect of interest rate volatility on mortgage insurance costs (Hendershott 
and Van Order, 1987). 
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and , where  is the probability of the set  

considering the systematic risk given 1-  confidence level. To obtain these two 

expected values, we need to specify the distribution for . Since , 

, is normally distributed, we denote it as ; and we define a 

random variable , , which follows a standardized normal 

distribution. Thus, we obtain  

;                              (16) 

; and                             (17)  

.                                 (18) 

Moreover, according to Equation (7), we have  

.             (19) 

When the housing return process includes both systematic and idiosyncratic risks, the 

dynamic process of the housing price becomes 

.     (20)  

Accordingly, the probability of  at time  given a deterministic value of 

 can be expressed as follows: 

     

,          (21) 

where  is the probability that the house price is less than  given a 

specified value of  at time , and  is an operator of probability. 
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We use the method shown in Lee et al. (2015) to obtain the MI premium 

considering a systematic risk based on VaR theory. We let  be a random variable 

which denotes the probability of  given , i.e., . We 

assume that the MI company intends to let the default probability be less than a 

deterministic value  (i.e., ). Thus, the cumulative probability of  being 

less than  can be expressed as follows (see Lee et al. , 2015): 

,                          (22) 

where is the probability operator,  is the probability density function of the 

standard normal distribution, and  is the critical value of .  

Next, we explain how MI insurers can calculate the MI premium under the 

systematic risk, given the 1-  confidence level. Because  is used to describe the 

relationship between the return of an asset or a portfolio, and the return of the market 

portfolio, its value can be negative or positive. According to Equation (11), if , 

a decrease in the market portfolio return decreases the return of the regional housing 

market and then increases the value of  (i.e., the probability of ). Thus, 

if we want to let the default probability be less than a certain value (i.e., ), 

we should stress the maximum possible decrease in the market portfolio return. For 

this reason, we should focus on the left-hand tail of the distribution of market 

portfolio returns. In contrast, if , a decrease in the market portfolio return 

increases the return of the regional housing market, and then decreases the value of 

. Thus, if we intend to let the default probability be less than a certain value, we 

should attach importance to the maximum possible increase in the market portfolio 

return. In this case, the analyses should concentrate on the right-hand tail of the 

distribution of market portfolio returns.  
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Then, we show how to solve  under  and . To begin with, 

in the case of , we need to know the range of  given . Based on 

Equation (19), we have 

.       (23) 

From the above inequality, we can derive the range of  given , as 

shown below:  

    

,                        (24) 

where . According to Equations (22) and (24), 

, which is the critical value of , can be obtained as follows:  

.           (25) 

Afterward, we illustrate how to derive the critical value of  at the  

confidence level (denoted as ). This value, which represents the probability of a 

loss caused by a systematic risk equal to , can be expressed as follows: 
 

,       (26) 

Then, we can obtain 

.         (27) 
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and the value of  becomes 

. 

In Equation (26),  is the probability of  given the systematic risk 

at the  confidence level. In other words, we can obtain the value of  

as 

.       (28) 

Moreover, in light of the above equation, for , we have 

.    (29) 

For simplicity, we represent  as follows: 

,        (30) 

where  is the absolute value of . 

Next, we solve the second term on the right-hand side of Equation (15), 

. Let  be a Radon-Nikodym 

derivative. After changing the measure and following the above procedures, we have 

, (31) 

where .  
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Then, putting the above solutions  ( i.e., Equation (30)) and  

( i.e., Equation (31)) into Equation (15), the value of the European put option based on 

the systematic risk at the 1 -  confidence level can be obtained as follows:  

    

.        (32) 

Accordingly, the present value of the severity of the loss for the MI insurer based on 

the systematic risk at the 1 -  confidence level can be expressed as follows:  

.                               (33) 

Finally, we follow the assumption shown in Bardhan et al. (2006) that the 

unconditional probability of borrower default, , is an exogenous variable.8 The 

actuarially fair price of the MI premium  is as follows: 

.                                   (34) 

Equation (34) is a closed-form formula for MI premiums that considers both 

systematic and idiosyncratic risks. It can be used to calculate MI premiums under 

various economic conditions over time at the 1-  confidence level. The model 

provides reasonable and accurate values for the MI premium because it 

simultaneously considers the effects of systematic and idiosyncratic risks on MI 

premiums. In the next section, we show that the MI premium is underestimated if it 

has not considered the systematic risk and idiosyncratic risk.  

3. Numerical Analyses 

 
8 Such specification has been found in many studies related with the valuation of MI premium. For 
example, Schwartz and Torous (1993), Dennis, Kuo and Yang (1997), and Bardhan et al. (2006), Chen 
et al. (2010) among others, model the unconditional probability of default exogenously. 
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Here we use numerical examples to illustrate the application of our model. One can 

apply our model to deal with the deal with different kinds of MI premiums, such as 

the individual-level MI, the city-level MI, the area-level MI, or the state-level MI. For 

example, if the MI companies want to decide the MI for a particular area, they can 

apply our model by using by the HPI for this area. Previous studies emphasizes that 

the effects of regional economic factors are even more important than effects of 

systematic risk in explaining U.S mortgage defaults before 2005 (Sanders, 2008). In 

the empirical section of this study, we evaluate the state-level MI premium. Thus, we 

use the state-level HPI relative to the country-level HPI to be the example for 

illustrating the application of our model. 

Several studies related to the housing return empirically demonstrate that the 

CAPM, which uses the S&P 500 Index as a factor of market risk, can explain 

differences in systematic risk across cities (Jud and Winkler, 2002; and Anderson and 

Beracha, 2010). Jud and Winkler (2002) show that lagged stock market returns have a 

significant positive impact on MSA house price returns. Anderson and Beracha (2010) 

find a positive relationship between the returns of houses in more than 3000 U.S. 

zip-codes and the stock market. Nevertheless, a number of authors argue that the U.S. 

real estate index has much more explanatory power than the S&P 500 Index (Chinloy, 

1992; Davidoff, 2007; Case et al., 2011; Voicu and Seiler, 2013). Several studies 

related to investigations of the housing market show that the market-wide housing 

return is a significant systematic risk-factor in explaining the area-specific real estate 

returns (Cannon et al., 2006; Case et al., 2011). Thus, we respectively adopt the S&P 

500 Index and the return of the aggregate U.S. housing market index, that is, the 

Housing Price Index (HPI) obtained from the Federal Housing Finance Agency 

(FHFA), as the market portfolio proxy.  
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As for the trends of international developments, the solvency regimes differ 

among countries.9 The aim of a solvency regime is to ensure the financial soundness 

of insurance undertakings, and in particular to ensure that they can survive difficult 

periods. Solvency rules stipulate the minimum amounts of financial resources that 

insurers and reinsurers must have in order to cover the risks to which they are exposed. 

Equally important, the rules also lay down the principles that should guide insurers’ 

overall risk management so that they can better anticipate any adverse events and 

better handle such situations. Since the idiosyncratic risk in our model derives from 

the regional housing market, we adopt the 51 U.S. state HPIs as the housing returns 

for the regions in the housing market. 

The S&P 500 Stock Index data were taken from the TEJ databank.10 In this study, 

all data on the housing price indices (i.e., aggregate national HPI and the HPI of the 

51 states in the U.S.) were obtained from the Federal Housing Finance Agency 

(FHFA).11 The FHFA’s HPI is thoroughly documented in the real estate literature 

(Fei, 2009; Case et al., 2011; Voicu and Seiler, 2013).12 The one reason is that these 

indices use repeat sales of all properties with mortgages purchased or securitized by 

Fannie Mae and Freddie Mac since 1975. The repeat sales methodology, based on 

work by Case and Shiller (1987), is attractive because it keeps quality constant across 

time. Another reason the FHFA indices are attractive is that they provide the broadest 

coverage of U.S. metropolitan areas (381 cities) and a longer time series than other 

price index sources.  

 
9 The main representatives of the world’s regulatory systems are the solvency regimes of the EU 
(Solvency I、Solvency II) and the NAIC’s RBC (risk-based capital) regime of the U.S. 
10 TEJ is a well-known databank containing financial information on Taiwan. 
11 The website is http://www.fhfa.gov/.  
12 The OFHEO and the Federal Housing Finance Board were combined in July 2008 through the 
Housing and Economic Recovery Act of 2008 to emerge as the Federal Housing Finance Agency. The 
FHFA’s HPI index is the same as the OFHEO’s HPI index cited in the previous literature. 
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Here we adopt data from the U.S. HPI’s seasonally adjusted purchase-only index. 

The seasonally adjusted HPI for each state is used as the area-specific housing market 

index. The U.S. HPI and each state’s HPI are quarterly data collected from 1991Q1 to 

2017Q2, yielding 105 samples in each state. Table 1 presents the means, standard 

deviations, and the maximum, median, and minimum values for each variable, 

including the S&P 500 Index, the U.S. HPI, and all the state HPIs. 

[Insert Table 1 here] 

Next, we illustrate how to apply our model. We selected a fixed-rate mortgage 

contract with 30-year maturity for our example. To illustrate the implementation of 

our model, we first assign the following base parameters:  years, = 3% 

(mortgage rate),  = 2% (interest rate),  = 95% (loan-to value ratio),  = 

$100 thousand (initial house value),  = 95 thousand (initial value of mortgage), 

 = 1 % (house depreciation rate), and = 75% (loss ratio). Data pertaining to the 

default probabilities were obtained from the Department of Housing & Urban 

Development’s 2010 FHA annual actuarial report.13 These data were sampled yearly 

from 1998 to 2010. Table 2 shows the means of reported default probabilities for each 

calendar year.  

[Insert Table 2 here] 

We use Equations (11) and (12) to estimate beta ( ) for the CAPM, the 

systematic risk, and the idiosyncratic risk. We multiply the series of quarterly returns 

of the market portfolio and each state’s HPI by 4 to obtain the series of yearly returns. 

In Table 3, we show the estimates of only one state (Alaska) as an example. In this 
 

13 The title of the report is “Actuarial Review of the Federal Housing Administration Mutual Mortgage 
Insurance Fund (Excluding HECMs) for Fiscal Year 2010.” HUD’s website is 
http://portal.hud.gov/hudportal/HUD. 
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case, the standard deviation of the housing return is 0.0521 (  0.0521). If we use 

the U.S. HPI as the proxy for market portfolio, 0.4260 (significant at the 1% 

level); the standard deviations for the return of the U.S. HPI is 0.0482 and the 

standard deviations for residual is  0.0479. If we use the S&P 500 as the proxy 

for market portfolio, we have -0.0261; the standard deviations for the returns of 

the S&P 500 Stock Index are 0.3013 and the standard deviations for residual is 

0.0515. However, the estimate of  is not significant when using the S&P 500 

Stock Index as the proxy for market portfolio. In this case, the U.S. HPI would have 

been a more suitable proxy for the market portfolio.  

[Insert Table 3 here] 

Using the same method, we estimate , the systematic risk, and the 

idiosyncratic risk for the 51 U.S. states. Tables 4 and 5 summarize the estimates of 

 for each U.S. state,14 respectively adopting the U.S. HPI and S&P 500 for the 

market portfolio. As shown in Table 4, all the  estimates are significant at the 1% 

level using the U.S. HPI as the proxy for the market portfolio. The  estimates are 

all positive, ranging from 0.2106 for North Dakota (ND) to 2.5173 for Nevada (NV). 

In other words, there is a positive relationship between the U.S. HPI returns and the 

state HPI returns for all states. However, in Table 5, the  estimates are not all 

significant or positive; they are significant for only four states and none are significant 

at the 1% level. They range from -0.0541 for Hawaii (HI) to 0.0709 for Nevada (NV). 

[Insert Tables 4 and 5 here] 

These results are consistent with previous studies, whose authors argue the U.S. 

HPI has much more explanatory power than the S&P 500 Index (Chinloy, 1992; 

 
14 Appendix A gives the code names of the 51 U.S. states (including the District of Columbia). 
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Davidoff, 2007; Case et al., 2011; Voicu and Seiler, 2013). The market-wide housing 

return is a significant systematic risk-factor in explaining the area-specific real estate 

returns (Cannon et al., 2006; Case et al., 2011). Furthermore, empirical results of 

several studies show that the estimated  values range from -0.185 to 2.6 (Chinloy, 

1992; Case, Cotter and Gabriel. 2011; Voicu and Seiler, 2013). Thus, our estimates of 

s ranging from 0.2106 to 2.5173 are reasonable since their values are within the 

scope of the estimated s in previous studies. Because our results reveal that the U.S. 

HPI should be a more suitable proxy for the market portfolio, our follow-up analyses 

focus only on the cases with the U.S. HPI as this proxy.  

In Table 6 we show the ratios of the idiosyncratic risk to the whole housing risk 

for each state. When using the U.S. HPI return for the market portfolio, these risks 

range from 32.72% to 97.64%. These ratios are larger than 50% for 47 of the 51 states. 

Thus, our results reveal that compared with the systematic risk, the idiosyncratic risk 

indeed plays an important role in the whole housing risk, because the housing assets 

have restrictions on diversification. This result is similar to the findings of Capozza 

and Schwann (1990), where the unsystematic risk is a larger proportion of the total 

risk than is the systematic risk. Therefore, one can infer that most of the effect of the 

total housing risk can be ascribed to the idiosyncratic risk. 

[Insert Table 6 here] 

After obtaining the estimates for  and  from Equation (11), we calculate 

the value of  and further calculate the MI premium based on our formula. We 

give the systematic risk at the 95% confidence level, i.e., = 5%. Next, we compare 

the results calculated from our model and from the traditional model provided by 

Bardhan et al. (2006). Here the estimated MI premium is expressed as the percentage 

of the initial loan value. Table 7 summarizes the estimates of the MI premium for 
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each state using the U.S. HPI for the market portfolios. In Table 7, we use and 

 to represent the MI premiums calculated by the traditional method and our 

method with the U.S. HPI index as the proxy for market portfolio. As shown in this 

table, the MI premiums using the traditional method are all quite low. For example, in 

Alaska we have = 0.0048%. In our model, we have =0.2767%. In Table 7, 

the results reveal that the MI premiums calculated by our model are all higher than 

those calculated by the traditional method. 

[Insert Table 7 here] 

Currently, the FHA’s MIP has two components: the upfront premium (UFMIP) 

and the annual premium. The current upfront premium rate is 1.75% of the loan 

amount and the current annual premium is 0.85% for the most common category of 

FHA loans.15 The FHA does not vary its premium based on borrower risk. Unlike the 

FHA’s MI insurance, the values of PM’s MI premiums depend on the borrower’s 

credit risk. The lowest charge for the high-FICO-score borrowers (above 760) is 

0.55% and the highest charge for the low-FICO-score borrowers (620-639) is 2.25%. 

The MI premiums for the FHA and PMI are the percentages of the mortgage’s 

outstanding balance.  

Table 8 shows the statistical summary for the estimated MI premiums. The 

average values of  and  are 0.0364% and 1.0562%, respectively. The 

average value of  is larger than the average value of . The minimum and 

maximum values of  are 0.0001% and 0.3472%. The minimum and maximum 

values of  are 0.0207% and 5.2733%. The MI premiums calculated by our 

model, considering both the systematic and idiosyncratic risks, are higher than those 

 
15 The most common category of FHA loans refers to LTVs of 95% or above, loans of $625,000 or 
below and payments for the term of the mortgage. 
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calculated by the model without considering these two risks. Our model gives a more 

reasonable valuation of the MI premium because it more sensitively reflects the 

housing market risk. According to Table 8, the MI premiums from the traditional 

method are unreasonable because they are much lower than the current MI premiums 

no matter whether the source is the FHA or PM. The MI premiums calculated by our 

model seem also lower than the current MI premiums required by the FHA and PM. 

However, the values in our model are closer to the current required MI premiums than 

that in traditional model. The MI premiums of the FHA and PM consider the LTV, 

loan amount, payments for the term of the mortgage and the borrower’s credit risk, 

but MI premiums of the FHA and PM do not consider both systematic and 

idiosyncratic risks. Thus, our model should help MI insures accurately determine fair 

MI premiums based on the different systematic and idiosyncratic risks and to 

effectively undertake sophisticated risk management. 

[Insert Table 8 here] 

To analyze the influence of the 2007 financial crisis on MI premiums, we also 

estimate MI premiums corresponding to the crisis. We divide the sample period into 

two sub-periods: Before Financial Crisis and After Financial Crisis. Before Financial 

Crisis is defined as the period from 1991Q2 to 2007Q1 and After Financial Crisis is 

defined as the period from 2007Q2 to 2017Q2. Table 9 gives the statistical summary. 

The means of the returns of the U.S. HPI (denoted as ) are 5.2604% and 0.9719% 

for the periods before and after the crisis, respectively, and the corresponding standard 

deviations are 2.7852% and 5.8659%. These results reveal that the housing price 

declined and the systematic risk increased because of the financial crisis. 

[Insert Table 9 here] 

HPIr
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Table 9 shows that the means (standard deviations) of  are 0.0209% 

(0.0637%) and 0.0543% (0.1014%) for the periods before and after the crisis, 

respectively. The corresponding means (standard deviations) of  are 0.6207% 

(1.0236%) and 1.3368% (1.5859%). The results reveal that regardless of whether the 

MI premiums are calculated by the traditional model or our model, the MI premium is 

shown to have increased due to the financial crisis. Accordingly, the MI premiums 

indeed went up because of the increase in the housing risk caused by the 2007 

financial crisis. 

Next, we describe our sensitivity analyses of the impact of the model’s 

parameters related to the systematic and idiosyncratic risks ( , ,  and ) 

on the MI premium. The relevant parameters are given the following values:  

years, = 3%, = 2%, = 95%, = 100 thousand, = 95 thousand, 

=1%, =75%, and we let  range from 0.01 to 0.5. Figure 1 shows the 

relationship between the MI premium ( ) and the confidence level of the 

systematic risk ( ). This figure shows the MI premium to be a convex function with 

a negative slope with respect to . In other words, as the value of  increases, the 

MI premium first sharply decreases and then slowly decreases. 

 [Insert Figure 1 here] 

Figure 2 shows how the values of  vary corresponding to changes in the 

value of . Here we assume that  ranges from 0 to 2. This figure shows that the 

relationship between  and  is a bit similar to an S-shaped curve with a 

positive slope. It tells us that  is positively related to ; a rise in  causes 

first a steady increase, then a steep increase and finally a steady increase in the change 
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of . Moreover, Figures 3 and 4 show how sensitive  is to changes in  

and . According to Figure 3, the influence of a change in  on the value of 

 is similar to the influence of a change in  on the value of . The relation 

of  and  is also a bit similar to S shape curve with a positive slope. Figure 4 

tells us that  is positively related to ; a rise in  first causes a sharp 

increase in the change of  followed by a very slow increase. In view of this, 

when MI insurers undertake risk management, idiosyncratic risks must be considered.  

To sum up, from the findings of our numerical example we infer that the MI premium 

is positively related to the parameters of both the systematic and unsystematic risks.  

[Insert Figures 2-4 here] 

4. Conclusion 

The sub-prime mortgage crisis that occurred in the U.S. in 2007 produced large losses 

from default for mortgage insurance institutions. Such systematic risk has posed new 

and considerable challenges on the pricing of mortgage insurance premiums. 

Moreover, since the housing assets have restrictions on diversification due to high 

transaction costs and liquidity risk, MI insurers do not fully diversify through the 

reinsurance market, thus incurring idiosyncratic risk. A large number of previous 

studies have demonstrated that systematic and idiosyncratic risks are indeed a crucial 

factor in the evolution of housing prices. For the above reasons, this study was 

undertaken to provide a reasonable model including these two risks to fairly valuate 

an MI premium.  

When evaluating and analyzing MI contracts, numerous authors have adopted an 

options-based pricing model. Bardhan et al. (2006) were the first to develop a 

closed-form formula for MI contracts based on an option-pricing framework; 
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thereafter, a number of studies using options-based pricing models to price MI 

premiums followed the model provided by Bardhan et al. (2006). Because the 

closed-form formula can be readily implemented in various market settings and can 

avoid complicated numerical procedures, we valuate MI premiums based on the 

option-pricing framework provided by Bardhan et al. (2006). Further, we used market 

data to conduct a numerical analys, and then compared the results from our model and 

from the traditional model provided by Bardhan et al. (2006). Doing so allows one to 

understand the effect of systematic and idiosyncratic risks on MI premiums. 

A number of studies have provided empirical evidence demonstrating that the 

CAPM provides a good explanation of the relationship between the housing return 

and the systematic risk. We therefore used the theory of CAPM to deal with the 

systematic and idiosyncratic risks. In addition, efficiently managing the exposure to 

the risks is important for MI insurers, because it can avoid the losses and may lower 

their capital requirements for holding insured mortgage loans. In considering the 

target PCR for insurers, we used the theory of VaR to derive a closed-form formula 

for an MI premium when MI insurers seek to restrain the systematic risk at a given 

confidence level.  

The numerical analyses yielded several important findings. First, all the 

estimates of  for the CAPM for the 51 U.S. states are significant at the 1% level 

when the U.S. HPI was adopted as the proxy for market portfolio, but those estimates 

are significant only for 4 states, and no  is significant at the 1% level, when the 

S&P 500 was adopted as the proxy for market portfolio. This result is consistent with 

the argument from previous studies, namely, that the U.S. HPI has much more 

explanatory power than the S&P 500 Index. Second, our estimates of  using the 

U.S. HPI range from 0.2106 to 2.5173. These values are within the scope of the 
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estimated  values found in previous studies. Third, our results show that the 

idiosyncratic risk is a larger proportion of the total housing risk than is the systematic 

risk. Therefore, one can infer that most of the effect of the total housing risk may be 

ascribed to the idiosyncratic risk. 

Fourth, our results reveal that the MI premiums calculated by our model 

considering both systematic and idiosyncratic risks are higher than those calculated by 

the models that do not consider these two risks. The average values for  and 

 are 0.0707% and 2.4576%, respectively. Given the model’s parameters, our 

numerical results seem more reasonable because numerous MI premiums calculated 

by the traditional method appear quite unreasonable. Fifth, our results reveal that the 

MI premiums indeed went up because of the increase in the systematic risk caused by 

the 2007 financial crisis, a fact demonstrated regardless of which model is used to 

calculate the MI premiums.  

Finally, summarizing the findings of our sensitivity analyses, we can infer that 

the MI premium ( ) is negatively related to  but positively related to the 

parameters of the systematic risk (  and ) and the idiosyncratic risk ( ). Thus, 

when MI insurers seek to fairly price an MI premium and undertake risk management, 

both of the systematic and idiosyncratic risks should be considered in the valuation 

model. Accordingly, our analyses should help MI insurers adjust MI premiums under 

various economic conditions. 

To the best of our knowledge, our pricing model is the first to provide a 

closed-form formula for MI valuation considering both systematic and idiosyncratic 

risks. Moreover, our model can be used to calculate MI premiums considering 

systematic risk at different confidence levels. Our pricing formula should make it 
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easier for MI insurers to take account of the economic environment in determining 

fair MI premiums. Until now, the MI premiums of both the FHA and PM depend on 

the terms of the mortgage or the borrower’s credit, but these two risks have not been 

considered. From the insurer’s perspective, the understanding of their exposure to 

systematic and to idiosyncratic risks can help them modulate MI premiums in 

response to changing economic conditions. If they can obtain MI premiums protected 

against the losses caused by the risks, they may need fewer extra reserve funds to 

satisfy the solvency capital requirements, and thus they can efficiently allocate the 

capital in relation to the minimum reserve and capital requirements. 

In general, the mortgagors pay the MI premium to MI companies. If MI company 

receive the MI premium without considering the PCR of systematic risk. MI 

companies may incure extra costs caused from the requirement for the PCR of 

systematic risk. Thus, MI companies need to consider the hedging problem by 

portfolio theory. Nowadays, most of the models of MI premium do not consider the 

PCR of systematic risk. Thus, if using such model to evaluate MI premiums, to 

discuss the management of MI portfolio on the hedging of systematic risk should be 

another interesting issue. In addition, to consider the possible early default probability 

for MI, our model follows the specifications in Bardhan et, al. (2006) that assumes the 

default probability is an exogenous in the model. However, in fact, the default 

probability may be influenced by house price. Based on such specification, the MI 

premium is modeled by the American-type option. This should be an interesting issue 

in the future study.  
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Appendix 
This appendix gives the code names of the U.S. 51 states, including the District of 
Columbia.  

Code 
Name 

State 
Code 
Name 

State 
Code 
Name 

State 

AK ALASKA KY KENTUCKY NY NEW YORK 
AL ALABAMA LA LOUISIANA OH OHIO 
AR ARKANSAS MA MASSACHUSETTS OK OKLAHOMA 
AZ ARIZONA MD MARYLAND OR OREGON 
CA CALIFORNIA ME MAINE PA PENNSYLVANIA 
CO COLORADO MI MICHIGAN RI RHODE ISLAND 

CT CONNECTICUT MN MINNESOTA SC 
SOUTH 

CAROLINA 

DC 
DISTRICT OF 
COLUMBIA 

MO MISSOURI SD SOUTH DAKOTA 

DE DELAWARE MS MISSISSIPPI TN TENNESSEE 
FL FLORIDA MT MONTANA TX TEXAS 

GA GEORGIA NC 
NORTH 

CAROLINA 
UT UTAH 

HI HAWAII ND NORTH DAKOTA VA VIRGINIA 
IA IOWA NE NEBRASKA VT VERMONT 

ID IDAHO NH NEW HAMPSHIRE WA WASHINGTON 

IL ILLINOIS NJ NEW JERSEY WI WISCONSIN 

IN INDIANA NM NEW MEXICO WV WEST VIRGINIA 

KS KANSAS NV NEVADA WY WYOMING 
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Figure 1: Sensitivity analyses for MI premiums corresponding to changes in the 

confidence level ( ) 

 
Note: The y-axis represents MI premiums. The x-axis represents confidence level , 
which ranges from 0.01 to 0.5. 
 

 

Figure 2: Sensitivity analyses for MI premiums corresponding to changes in   
 

 
Note: The y-axis represents MI premiums. The x-axis represents , which ranges 
from 0 to 2. 
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Figure 3: Sensitivity analyses for MI premiums corresponding to changes in the 

systematic risk 

 
Note: The y-axis represents MI premiums. The x-axis represents , which ranges 
from 0 to 0.4. 
 
 

Figure 4: Sensitivity analyses for MI premiums corresponding to changes in the 

idiosyncratic risks 

 
Note: The y-axis represents MI premiums. The x-axis represents , which ranges 
from 0 to 0.4. 
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Table 1: Statistical summary for the returns of housing price indices and the 
S&P 500 index  

 State HPI U.S. HPI S&P 500 

Mean 0.0358 0.0372 0.0866 

Std 0.0464 0.0506 0.1682 

Max 0.1059 0.3387 0.4657 

Median 0.0461 0.0379 0.1032 

Min -0.1007 -0.3164 -0.3968 

Note: This table gives the statistical summary for the returns of U.S. HPI, all state HPIs, and the S&P 
500 Index. “Mean”, “Std”, “Max”, “Med”, and “Min” stand for the mean, standard deviation, minimum, 
median, and maximum, respectively. The S&P 500 Index, U.S. HPI and state HPI data are all quarterly 
data from 1991Q1 to 2017Q2. All data for the U.S. HPI and state HPIs were obtained from the Federal 
Housing Finance Agency (FHFA). 
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Table 2: Summary of default probabilities for each calendar year  

Calendar 

Years 

Default 

probability 

Calendar 

Years 

Default 

probability 

1 0.0003% 16 0.6703% 

2 0.0157% 17 0.3297% 

3 0.1350% 18 0.3720% 

4 0.3183% 19 0.5067% 

5 0.3837% 20 0.6993% 

6 0.3997% 21 0.7533% 

7 0.3897% 22 0.8880% 

8 0.3687% 23 0.7470% 

9 0.6230% 24 0.5990% 

10 0.8437% 25 0.8857% 

11 0.9633% 26 1.5660% 

12 0.5283% 27 1.6377% 

13 0.5823% 28 1.4737% 

14 0.7140% 29 2.5890% 

15 0.6393% 30 1.6900% 

Note: The data regarding the prepayment and default probabilities were obtained from the Department 

of Housing & Urban Development’s 2010 FHA annual actuarial report. These reports were sampled 

yearly from 1998 to 2010. This table shows the default probabilities that were obtained by calculating 

the means for each calendar year the mortgage was issued. 
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Table 3: Estimated parameter values for the CAPM, systematic volatility ( ) 

and idiosyncratic volatility ( ) 

Market Portfolio      

U.S. HPI 
0.0207***  0.4260***  0.0521  0.0482  0.0479  

(0.0005)  (0.0000)     

S&P 500 
0.0376***  -0.0261  0.0521  0.3013  0.0515  

(0.0000)  (0.1246)     
Note: In this table, we use only one state (Alaska) as an example to show the estimates. We 

respectively adopted the U.S. HPI and S&P 500 Index as the market portfolio to estimate the intercept 

term  and  in the CAPM (Equation (11)).  represents the housing risk for each state.  

represents the risk for market portfolio,  represents the idiosyncratic housing risk, estimated by the 

CAPM. The value in the parenthesis is the P-value. *** denotes significance at the 1 percent level.  
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Table 4: Estimates of beta for all the states (market portfolio adopted from the 

U.S. HPI)  

State  P-value State  P-value State  P-value 

AK 0.4260***  0.0000  KY 0.3935***  0.0000  NY 0.7932***  0.0000  

AL 0.5760***  0.0000  LA 0.4571***  0.0000  OH 0.5778***  0.0000  

AR 0.4955***  0.0000  MA 0.9457***  0.0000  OK 0.3699***  0.0000  

AZ 2.0660***  0.0000  MD 1.4173***  0.0000  OR 1.1783***  0.0000  

CA 2.2601***  0.0000  ME 0.8755***  0.0000  PA 0.6910***  0.0000  

CO 0.6895***  0.0000  MI 0.9179***  0.0000  RI 1.2875***  0.0000  

CT 0.9194***  0.0000  MN 1.0255***  0.0000  SC 0.6966***  0.0000  

DC 1.1639***  0.0001  MO 0.6506***  0.0000  SD 0.3213***  0.0008  

DE 1.0117***  0.0000  MS 0.4453***  0.0000  TN 0.5998***  0.0000  

FL 2.0860***  0.0000  MT 0.6248***  0.0000  TX 0.4135***  0.0000  

GA 0.9922***  0.0000  NC 0.6139***  0.0000  UT 0.8932***  0.0000  

HI 1.5085***  0.0000  ND 0.2106***  0.0269  VA 1.1067***  0.0000  

IA 0.3340***  0.0000  NE 0.3665***  0.0000  VT 0.6220***  0.0001  

ID 1.1588***  0.0000  NH 1.0809***  0.0000  WA 1.1749***  0.0000  

IL 0.8159***  0.0000  NJ 1.1117***  0.0000  WI 0.6189***  0.0000  

IN 0.4206***  0.0000  NM 0.6725***  0.0000  WV 0.3068***  0.0185  

KS 0.4367***  0.0000  NV 2.5173***  0.0000  WY 0.4593***  0.0002  

Note: This table summarizes the  estimates for each U.S. state when we use the U.S. HPI as the 

market portfolio. For the definitions of the code names of the states, see Appendix. *** denotes 

significance at the 1 percent level. 
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Table 5: Estimates of beta for all the states (market portfolio adopted from the 

S&P 500 index)  

State  P-value State  P-value State  P-value 

AK -0.0261 0.1246 KY 0.0185* 0.0704 NY -0.0060 0.7267 

AL 0.0025 0.8772 LA 0.0067 0.5983 OH 0.0251** 0.0306 

AR -0.0092 0.5924 MA -0.0084 0.6847 OK 0.0177 0.1856 

AZ 0.0584 0.1134 MD 0.0048 0.8556 OR 0.0046 0.8460 

CA 0.0669* 0.0907 ME -0.0148 0.5547 PA 0.0088 0.5170 

CO 0.0096 0.5807 MI 0.0140 0.5060 RI -0.0245 0.4098 

CT -0.0105 0.5898 MN 0.0020 0.9186 SC 0.0106 0.5393 

DC 0.0583 0.2392 MO -0.0017 0.8982 SD 0.0026 0.8712 

DE -0.0009 0.9696 MS 0.0145 0.3599 TN 0.0043 0.7440 

FL 0.0534 0.1233 MT -0.0017 0.9358 TX 0.0103 0.3028 

GA 0.0158 0.4342 NC 0.0034 0.8191 UT 0.0390 0.1070 

HI -0.0541 0.2276 ND 0.0069 0.6527 VA 0.0072 0.7203 

IA 0.0148 0.1692 NE 0.0221* 0.0978 VT 0.0214 0.4147 

ID -0.0090 0.7298 NH -0.0286 0.2477 WA 0.0216 0.3327 

IL 0.0092 0.5493 NJ -0.0153 0.4703 WI -0.0018 0.8956 

IN 0.0160 0.1271 NM 0.0035 0.8554 WV 0.0063 0.7642 

KS -0.0007 0.9592 NV 0.0709 0.1086 WY 0.0060 0.7681 

Note: This table summarizes the  estimates for each U.S. state when we use the S&P 500 as the 

market portfolio. For the definitions of the code names of the states, see Appendix. * and ** denote 

significance at the 10 and 5 percent levels respectively. 

b b b

b
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Table 6: Ratios of the idiosyncratic risk to the whole housing risk for each state (market portfolio adopted from the U.S. HPI)  
 

State   Ratio State   Ratio State   ratio 
AK 0.0521 0.0479 91.92% KY 0.0315 0.0251 79.78% NY 0.0522 0.0356 68.14% 
AL 0.0488 0.0401 82.22% LA 0.0389 0.0321 82.46% OH 0.0358 0.0224 62.74% 
AR 0.0525 0.0468 89.07% MA 0.0629 0.0434 68.98% OK 0.0410 0.0369 90.05% 
AZ 0.1131 0.0537 47.45% MD 0.0805 0.0426 52.91% OR 0.0727 0.0455 62.50% 
CA 0.1214 0.0537 44.22% ME 0.0764 0.0637 83.37% PA 0.0416 0.0250 60.03% 
CO 0.0532 0.0415 78.07% MI 0.0642 0.0466 72.52% RI 0.0909 0.0664 73.09% 
CT 0.0593 0.0394 66.50% MN 0.0582 0.0308 52.93% SC 0.0528 0.0408 77.23% 
DC 0.1515 0.1408 92.90% MO 0.0395 0.0241 60.89% SD 0.0480 0.0454 94.65% 
DE 0.0752 0.0573 76.15% MS 0.0484 0.0434 89.63% TN 0.0399 0.0275 68.90% 
FL 0.1064 0.0348 32.72% MT 0.0631 0.0555 87.89% TX 0.0306 0.0232 75.87% 
GA 0.0616 0.0388 62.98% NC 0.0455 0.0346 75.99% UT 0.0742 0.0605 81.46% 
HI 0.1372 0.1164 84.81% ND 0.0470 0.0459 97.64% VA 0.0614 0.0304 49.47% 
IA 0.0330 0.0288 87.29% NE 0.0409 0.0369 90.22% VT 0.0800 0.0741 92.71% 
ID 0.0799 0.0571 71.51% NH 0.0757 0.0549 72.56% WA 0.0683 0.0381 55.86% 
IL 0.0469 0.0255 54.44% NJ 0.0646 0.0360 55.81% WI 0.0415 0.0288 69.52% 
IN 0.0322 0.0250 77.71% NM 0.0593 0.0497 83.74% WV 0.0644 0.0627 97.33% 
KS 0.0390 0.0328 84.18% NV 0.1355 0.0605 44.61% WY 0.0622 0.0581 93.45% 

Note: For the definitions of the code names of the states, see Appendix. The ratio equals  divided by . Other definitions see Table 3.

Hs es Hs es Ms es

es Hs
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Table 7: MI premiums for each state estimated by the traditional model and our 
model  

State   State   State   

AK 0.0048 0.2767 KY 0.0001 0.0257 NY 0.0048 0.5012 

AL 0.0032 0.3004 LA 0.0007 0.1006 OH 0.0003 0.0642 

AR 0.0050 0.3264 MA 0.0134 0.9683 OK 0.0010 0.1058 

AZ 0.1452 4.3429 MD 0.0414 2.3341 OR 0.0267 1.6099 

CA 0.1821 4.8109 ME 0.0331 1.2196 PA 0.0011 0.1738 

CO 0.0054 0.4629 MI 0.0148 0.9742 RI 0.0672 2.2073 

CT 0.0098 0.8249 MN 0.0089 0.8913 SC 0.0052 0.4593 

DC 0.3472 2.5482 MO 0.0008 0.1263 SD 0.0029 0.1647 

DE 0.0309 1.3933 MS 0.0030 0.2306 TN 0.0008 0.1331 

FL 0.1183 4.5657 MT 0.0136 0.6339 TX 0.0001 0.0207 

GA 0.0119 0.9774 NC 0.0020 0.2483 UT 0.0292 1.1965 

HI 0.2628 3.0995 ND 0.0025 0.1029 VA 0.0117 1.1126 

IA 0.0002 0.0325 NE 0.0010 0.1043 VT 0.0403 0.9287 

ID 0.0401 1.7482 NH 0.0318 1.5154 WA 0.0199 1.4719 

IL 0.0025 0.3366 NJ 0.0152 1.2414 WI 0.0011 0.1662 

IN 0.0001 0.0311 NM 0.0098 0.5961 WV 0.0150 0.3348 

KS 0.0007 0.0977 NV 0.2537 5.2733 WY 0.0126 0.4567 

Note: The unit is % in this table.  represents the MI premium calculated by the traditional model 
(Bardhan et al., 2006).  is calculated by Equation (10).  represents the MI premium 

calculated by our model when we use the U.S. HPI as the market portfolio.  is calculated by 

Equation (34). The basic parameters for calculating MI (i.e.,  and ) are:  years,  

= 3%, = 2%,  = 95%, = $100 thousand, = $95 thousand, = 1%, = 75%.  

and  are shown in Tables 4 and 6, respectively.  
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Table 8: Statistical summary for the estimated MI premiums 

   

Mean 0.0364 1.0562 

Std 0.0736 1.3080 

Max 0.3472 5.2733 

Median 0.0098 0.5012 

Min 0.0001 0.0207 

Note: The unit is % in this table. The means and standard deviations of MI (i.e.,  and ) are 

calculated from the MIs for each of the 51 states. For other definitions, see Tables 1 and 7. 

 
 
 
Table 9: Statistical summary for the estimated MI premiums with respect to the 

2007 financial crisis  

Period     

Before Financial Crisis 

Mean 5.2604 0.0209 0.6207 

Std 2.7852 0.0637 1.0236 

After Financial Crisis 

Mean 0.9719 0.0543 1.3368 

Std 5.8659 0.1014 1.5859 

Note: The unit is % in this table.  denotes the yearly return for the U.S. HPI. We divide the 

sample period into two sub-periods: Before Financial Crisis and After Financial Crisis. Before 

Financial Crisis is defined as the period from 1991Q2 to 2007Q1; After Financial Crisis is defined as 

the period from 2007Q2 to 2017Q2. The means and standard deviations of  are calculated from 

the data in the subsamples. The means and standard deviations of MI are calculated from the estimated 

MIs for each of the 51 states. For other definitions, see Tables 1 and 7. 
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